Use of a coculture to enable current production by geobacter sulfurreducens.

نویسندگان

  • Youpeng Qu
  • Yujie Feng
  • Xin Wang
  • Bruce E Logan
چکیده

Microbial fuel cells often produce more electrical power with mixed cultures than with pure cultures. Here, we show that a coculture of a nonexoelectrogen (Escherichia coli) and Geobacter sulfurreducens improved system performance relative to that of a pure culture of the exoelectrogen due to the consumption of oxygen leaking into the reactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link between capacity for current production and syntrophic growth in Geobacter species

Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm(2)), comparable to G. sulfurreducens. G....

متن کامل

Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation

Interspecies electron transfer is a common way to couple metabolic energy balances between different species in mixed culture consortia. Direct interspecies electron transfer (DIET) mechanism has been recently characterised with Geobacter species which couple the electron balance with other species through physical contacts. Using this mechanism could be an efficient and cost-effective way to d...

متن کامل

Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.

A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase i...

متن کامل

Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.

A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated ...

متن کامل

Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners

Pure cultures of Geobacter sulfurreducens and other Fe(III)-reducing bacteria accumulated hydrogen to partial pressures of 5 to 70 Pa with acetate, butyrate, benzoate, ethanol, lactate, or glucose as the electron donor if electron release to an acceptor was limiting. G. sulfurreducens coupled acetate oxidation with electron transfer to an anaerobic partner bacterium in the absence of ferric iro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 9  شماره 

صفحات  -

تاریخ انتشار 2012